Dose-additive inhibition of chinook salmon acetylcholinesterase activity by mixtures of organophosphate and carbamate insecticides.
نویسندگان
چکیده
Organophosphate and carbamate insecticides are widely detected in surface waters of the western United States. These chemicals interfere with acetylcholine-mediated synaptic transmission in the nervous systems of fish and other aquatic animals via the inhibition of AChE (acetylcholinesterase) enzyme activity. Anticholinesterase insecticides commonly co-occur in the environment. This raises the possibility of antagonistic, additive, or synergistic neurotoxicity in exposed fish, including threatened and endangered species of Pacific salmon. We extracted AChE from the olfactory nervous system of chinook salmon (Oncorhynchus tshawytscha) and investigated the inhibitory effects of organophosphates (the oxon derivatives of diazinon, chlorpyrifos, and malathion) and carbamates (carbaryl and carbofuran), alone and in two-way combinations. We found that the joint toxicity of anticholinesterase mixtures can be accurately predicted from the inhibitory potencies of individual chemicals within a mixture. This indicates that organophosphate and carbamate insecticides are noninteractive in terms of AChE inhibition and that it might be possible to estimate the cumulative neurotoxicity of mixtures by simple dose addition. Because organophosphates and carbamates are likely to have additive effects on the neurobehavior of salmon under natural exposure conditions, ecological risk assessments that focus on individual anticholinesterases might underestimate the actual risk to salmon in watersheds in which mixtures of these chemicals occur.
منابع مشابه
The Synergistic Toxicity of Pesticide Mixtures: Implications for Risk Assessment and the Conservation of Endangered Pacific Salmon
BACKGROUND Mixtures of organophosphate and carbamate pesticides are commonly detected in freshwater habitats that support threatened and endangered species of Pacific salmon (Oncorhynchus sp.). These pesticides inhibit the activity of acetylcholinesterase (AChE) and thus have potential to interfere with behaviors that may be essential for salmon survival. Although the effects of individual anti...
متن کاملDiazinon disrupts antipredator and homing behaviors in chinook salmon (Oncorhynchus tshawytscha)
Neurotoxic pesticides are known to contaminate surface waters that provide habitat for salmonids, including some listed for protection under the U.S. Endangered Species Act. Despite their widespread use, the impacts of these pesticides on the neurological health of wild salmon are not well understood. Of particular concern are the organophosphate and carbamate insecticides that block synaptic t...
متن کاملIndividual variability in esterase activity and CYP1A levels in Chinook salmon (Oncorhynchus tshawytscha) exposed to esfenvalerate and chlorpyrifos.
Acetylcholinesterase (AChE) activity has traditionally been monitored as a biomarker of organophosphate (OP) and/or carbamate exposure. However, AChE activity may not be the most sensitive endpoint for these agrochemicals, because OPs can cause adverse physiological effects at concentrations that do not affect AChE activity. Carboxylesterases are a related family of enzymes that have higher aff...
متن کاملA fish of many scales: extrapolating sublethal pesticide exposures to the productivity of wild salmon populations.
For more than a decade, numerous pesticides have been detected in river systems of the western United States that support anadromous species of Pacific salmon and steelhead. Over the same interval, several declining wild salmon populations have been listed as either threatened or endangered under the U.S. Endangered Species Act (ESA). Because pesticides occur in surface waters that provide crit...
متن کاملA small-volume bioassay for quantification of the esterase inhibiting potency of mixtures of organophosphate and carbamate insecticides in rainwater: development and optimization.
The goal of this study was to develop a sensitive in vitro bioassay for quantification of the total esterase inhibiting potency of low concentrations of organophosphate and carbamate insecticides in relatively small rainwater samples. Purified acetylcholinesterase (AChE) from electric eel (Electrophorus electricus) and carboxylesterases from a homogenate of honeybee heads (Apis mellifera) were ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Environmental toxicology and chemistry
دوره 25 5 شماره
صفحات -
تاریخ انتشار 2006